Properties of Beta Function and Euler’s First and Second Integral

1). Properties of Beta Function :

(1). B(m,n) = B(n,m)

         Substituting x =1 – y in the definition of Beta Function                                                             Euler's First Integrals For Beta Function , Euler's First Integrals                                       

                                             

                      B (m,n) = B (n,m)

Second properties of Beta Function

               

                      

                      

Third properties of Beta Function

                 Substituting x = sin^2 θ in the definition of Beta Function 

                            

                                           

                                           

2). Euler’s First Integrals For Beta Function :

                                    Euler's First Integrals For Beta Function              

     This is for positive values of m and n, following definite integral is called Beta Function and It is denoted by notation B(m,n) 

            

3). Euler’s Second Integrals For Gamma Function :

                  

Euler's Second Integrals For Gamma Functions The following infinite integral n € N is called Gamma Functions and It is denoted by notation Γ(n).

               

 👉  And check out also this topic 

Leave a Comment