Gamma Function by Euler’s Second Integral
……..(1)
1). Recurrence Formula :
n > 0
Proof – Put value (n+1) in equation no.1
Or, if n > 0
2). Relation between Gamma Function and Factorial :
Γ(2) = 1Γ(1) = 1!
Γ(3) = 2Γ(2) = 2*1. = 2!
Γ(4) = 3Γ(3) = 3*(2)! = 3!
Γ(5) = 4Γ(4) = 4*(3)! = 4!
Remark :
for 
3). Standard Integral :
Proof – Substituting x = az in the definition of the Gamma Function ,
4). Gamma Formula :
Proof –
……………(2)
………………(3)
From equation 2 & 3 ,